Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
在本文中,我们提出了与IEEE计算机协会在CVPR 2022上同时与IEEE计算机协会研讨会同时举行的多手术检测挑战。我们的多手术检测挑战旨在检测自动图像操作,包括但不限于图像编辑,图像合成,图像合成,图像,图像,图像,图像合成,图像,图像编辑一代,图像Photoshop等。我们的挑战吸引了来自世界各地的674支团队,约有2000个有效的结果提交数量。我们邀请了前十支球队为挑战提供解决方案,其中三支球队在大结局中获得了奖项。在本文中,我们介绍了前三名团队的解决方案,以增强图像伪造检测领域的研究工作。
translated by 谷歌翻译
从视频中获得地面真相标签很具有挑战性,因为在像素流标签的手动注释非常昂贵且费力。此外,现有的方法试图将合成数据集的训练模型调整到真实的视频中,该视频不可避免地遭受了域差异并阻碍了现实世界应用程序的性能。为了解决这些问题,我们提出了RealFlow,这是一个基于期望最大化的框架,可以直接从任何未标记的现实视频中创建大规模的光流数据集。具体而言,我们首先估计一对视频帧之间的光流,然后根据预测流从该对中合成新图像。因此,新图像对及其相应的流可以被视为新的训练集。此外,我们设计了一种逼真的图像对渲染(RIPR)模块,该模块采用软磁性裂口和双向孔填充技术来减轻图像合成的伪像。在E-Step中,RIPR呈现新图像以创建大量培训数据。在M-Step中,我们利用生成的训练数据来训练光流网络,该数据可用于估计下一个E步骤中的光流。在迭代学习步骤中,流网络的能力逐渐提高,流量的准确性以及合成数据集的质量也是如此。实验结果表明,REALFLOW的表现优于先前的数据集生成方法。此外,基于生成的数据集,我们的方法与受监督和无监督的光流方法相比,在两个标准基准测试方面达到了最先进的性能。我们的代码和数据集可从https://github.com/megvii-research/realflow获得
translated by 谷歌翻译
逻辑自然语言生成,即生成可以由结构化表所需的文本描述,这是由于生成的低保真度导致的挑战。 CiteT {Chen2020Logic2Text}通过注释临时逻辑程序来控制生成内容和语义来解决此问题,并将表感知逻辑表单的任务呈现给文本(logic2text)生成。然而,虽然表实例在现实世界中丰富,但与文本描述配对的逻辑形式需要昂贵的人类注释工作,这限制了神经模型的性能。为了缓解此方法,我们提出了主题条件的数据增强(主题D),它利用GPT-2直接从表中生成未配对的逻辑表单和文本描述。我们进一步引入了逻辑表单生成(LG),Logic2Text的双重任务,要求基于表的文本描述生成有效的逻辑表单。我们还提出了一种半监督的学习方法,共同列车,并使用标记和增强数据共同列车和LG模型。通过回平翻译,这两个模型通过提供额外的监督信号来互相受益。 LOGIC2TEXT数据集的实验结果和LG任务表明,我们的方法可以通过大幅保证金有效地利用增强数据和优于监督的基线。
translated by 谷歌翻译
Web搜索是人类获取信息的重要方法,但是对于了解网页内容的机器仍然是一个巨大的挑战。在本文中,我们介绍了对网上结构阅读理解(SRC)的任务。鉴于网页和关于它的问题,任务是从网页找到答案。此任务要求系统不仅要了解文本的语义,还需要了解文本的语义,还需要网页的结构。此外,我们提出了一种新的基于Web的结构阅读理解数据集。 WebSRC由400K问答对组成,从6.4K网页收集。与QA对一起,我们的数据集还提供了相应的HTML源代码,屏幕截图和元数据。 WebSRC中的每个问题都需要对网页的某种结构理解来回答,并且答案是网页或是/否的文本跨度。我们评估我们数据集的各种基线,以显示我们的任务难度。我们还研究了结构信息和视觉功能的有用性。我们的数据集和基线已在HTTPS://x-lance.github.io/websrc/上公开提供。
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
In this paper, a semantic communication framework for image transmission is developed. In the investigated framework, a set of servers cooperatively transmit images to a set of users utilizing semantic communication techniques. To evaluate the performance of studied semantic communication system, a multimodal metric is proposed to measure the correlation between the extracted semantic information and the original image. To meet the ISS requirement of each user, each server must jointly determine the semantic information to be transmitted and the resource blocks (RBs) used for semantic information transmission. We formulate this problem as an optimization problem aiming to minimize each server's transmission latency while reaching the ISS requirement. To solve this problem, a value decomposition based entropy-maximized multi-agent reinforcement learning (RL) is proposed, which enables servers to coordinate for training and execute RB allocation in a distributed manner to approach to a globally optimal performance with less training iterations. Compared to traditional multi-agent RL, the proposed RL improves the valuable action exploration of servers and the probability of finding a globally optimal RB allocation policy based on local observation. Simulation results show that the proposed algorithm can reduce the transmission delay by up to 16.1% compared to traditional multi-agent RL.
translated by 谷歌翻译
New architecture GPUs like A100 are now equipped with multi-instance GPU (MIG) technology, which allows the GPU to be partitioned into multiple small, isolated instances. This technology provides more flexibility for users to support both deep learning training and inference workloads, but efficiently utilizing it can still be challenging. The vision of this paper is to provide a more comprehensive and practical benchmark study for MIG in order to eliminate the need for tedious manual benchmarking and tuning efforts. To achieve this vision, the paper presents MIGPerf, an open-source tool that streamlines the benchmark study for MIG. Using MIGPerf, the authors conduct a series of experiments, including deep learning training and inference characterization on MIG, GPU sharing characterization, and framework compatibility with MIG. The results of these experiments provide new insights and guidance for users to effectively employ MIG, and lay the foundation for further research on the orchestration of hybrid training and inference workloads on MIGs. The code and results are released on https://github.com/MLSysOps/MIGProfiler. This work is still in progress and more results will be published soon.
translated by 谷歌翻译
With the development of technology and sharing economy, Airbnb as a famous short-term rental platform, has become the first choice for many young people to select. The issue of Airbnb's pricing has always been a problem worth studying. While the previous studies achieve promising results, there are exists deficiencies to solve. Such as, (1) the feature attributes of rental are not rich enough; (2) the research on rental text information is not deep enough; (3) there are few studies on predicting the rental price combined with the point of interest(POI) around the house. To address the above challenges, we proposes a multi-source information embedding(MSIE) model to predict the rental price of Airbnb. Specifically, we first selects the statistical feature to embed the original rental data. Secondly, we generates the word feature vector and emotional score combination of three different text information to form the text feature embedding. Thirdly, we uses the points of interest(POI) around the rental house information generates a variety of spatial network graphs, and learns the embedding of the network to obtain the spatial feature embedding. Finally, this paper combines the three modules into multi source rental representations, and uses the constructed fully connected neural network to predict the price. The analysis of the experimental results shows the effectiveness of our proposed model.
translated by 谷歌翻译
Domain adaptive detection aims to improve the generalization of detectors on target domain. To reduce discrepancy in feature distributions between two domains, recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning. However, they neglect the relationship between multiple granularities and different features in alignment, degrading detection. Addressing this, we introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning. The key is to encode the dependencies across different granularities including pixel-, instance-, and category-levels simultaneously to align two domains. Specifically, based on pixel-level features, we first develop an omni-scale gated fusion (OSGF) module to aggregate discriminative representations of instances with scale-aware convolutions, leading to robust multi-scale detection. Besides, we introduce multi-granularity discriminators to identify where, either source or target domains, different granularities of samples come from. Note that, MGA not only leverages instance discriminability in different categories but also exploits category consistency between two domains for detection. Furthermore, we present an adaptive exponential moving average (AEMA) strategy that explores model assessments for model update to improve pseudo labels and alleviate local misalignment problem, boosting detection robustness. Extensive experiments on multiple domain adaption scenarios validate the superiority of MGA over other approaches on FCOS and Faster R-CNN detectors. Code will be released at https://github.com/tiankongzhang/MGA.
translated by 谷歌翻译